Mean-Field Analysis of Coding Versus Replication in Large Data Storage Systems

Author:

Li Bin1,Ramamoorthy Aditya2,Srikant R.3

Affiliation:

1. University of Rhode Island, Kingston

2. Iowa State University, Ames

3. University of Illinois at Urbana-Champaign

Abstract

We study cloud storage systems with a very large number of files stored in a very large number of servers. In such systems, files are either replicated or coded to ensure reliability, i.e., to guarantee file recovery from server failures. This redundancy in storage can further be exploited to improve system performance (mean file-access delay) through appropriate load-balancing (routing) schemes. However, it is unclear whether coding or replication is better from a system performance perspective since the corresponding queueing analysis of such systems is, in general, quite difficult except for the trivial case when the system load asymptotically tends to zero. Here, we study the more difficult case where the system load is not asymptotically zero. Using the fact that the system size is large, we obtain a mean-field limit for the steady-state distribution of the number of file access requests waiting at each server. We then use the mean-field limit to show that, for a given storage capacity per file, coding strictly outperforms replication at all traffic loads while improving reliability. Further, the factor by which the performance improves in the heavy traffic is at least as large as in the light-traffic case. Finally, we validate these results through extensive simulations.

Funder

NSF

DTRA

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Media Technology,Information Systems,Software,Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliability Evaluation of Erasure-coded Storage Systems with Latent Errors;ACM Transactions on Storage;2023-01-11

2. Tackling heterogeneous traffic in multi-access systems via erasure coded servers;Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing;2022-10-03

3. Latency Optimal Storage and Scheduling of Replicated Fragments for Memory Constrained Servers;IEEE Transactions on Information Theory;2022-06

4. Latency-Redundancy Tradeoff in Distributed Read-Write Systems;2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS);2022-01-04

5. Download time analysis for distributed storage systems with node failures;2021 IEEE International Symposium on Information Theory (ISIT);2021-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3