Robust Image Representation via Low Rank Locality Preserving Projection

Author:

Yin Shuai1,Sun Yanfeng1,Gao Junbin2,Hu Yongli1,Wang Boyue1,Yin Baocai1

Affiliation:

1. Beijing University of Technology, Beijing, China

2. The University of Sydney, Camperdown NSW, Australia

Abstract

Locality preserving projection (LPP) is a dimensionality reduction algorithm preserving the neighhorhood graph structure of data. However, the conventional LPP is sensitive to outliers existing in data. This article proposes a novel low-rank LPP model called LR-LPP. In this new model, original data are decomposed into the clean intrinsic component and noise component. Then the projective matrix is learned based on the clean intrinsic component which is encoded in low-rank features. The noise component is constrained by the 1 -norm which is more robust to outliers. Finally, LR-LPP model is extended to LR-FLPP in which low-dimensional feature is measured by F-norm. LR-FLPP will reduce aggregated error and weaken the effect of outliers, which will make the proposed LR-FLPP even more robust for outliers. The experimental results on public image databases demonstrate the effectiveness of the proposed LR-LPP and LR-FLPP.

Funder

Beijing Talents Project

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference36 articles.

1. 1996. A L1-norm PCA and a heuristic approach;Baccini A.;Ordinal and Symbolic Data Analysis,1996

2. 2002. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection;Belhumeur P. N.;IEEE Transactions on Pattern Analysis and Machine Intelligence,2002

3. 2008. A singular value thresholding algorithm for matrix completion;Cai J. F.;SIAM Journal on Optimization,2008

4. Robust principal component analysis?

5. S. Celik B. A. Logsdon and S. I. Lee. 2014. Efficient dimensionality reduction for high-dimensional network estimation. In ICML. 1953–1961. S. Celik B. A. Logsdon and S. I. Lee. 2014. Efficient dimensionality reduction for high-dimensional network estimation. In ICML. 1953–1961.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3