ProbNV: probabilistic verification of network control planes

Author:

Giannarakis Nick1,Silva Alexandra2ORCID,Walker David3

Affiliation:

1. University of Wisconsin-Madison, USA

2. University College London, UK / Cornell University, USA

3. Princeton University, USA

Abstract

ProbNV is a new framework for probabilistic network control plane verification that strikes a balance between generality and scalability. ProbNV is general enough to encode a wide range of features from the most common protocols (eBGP and OSPF) and yet scalable enough to handle challenging properties, such as probabilistic all-failures analysis of medium-sized networks with 100-200 devices. When there are a small, bounded number of failures, networks with up to 500 devices may be verified in seconds. ProbNV operates by translating raw CISCO configurations into a probabilistic and functional programming language designed for network verification. This language comes equipped with a novel type system that characterizes the sort of representation to be used for each data structure: concrete for the usual representation of values; symbolic for a BDD-based representation of sets of values; and multi-value for an MTBDD-based representation of values that depend upon symbolics. Careful use of these varying representations speeds execution of symbolic simulation of network models. The MTBDD-based representations are also used to calculate probabilistic properties of network models once symbolic simulation is complete. We implement the language and evaluate its performance on benchmarks constructed from real network topologies and synthesized routing policies.

Funder

ERC

Royal Society

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A General and Efficient Approach to Verifying Traffic Load Properties under Arbitrary k Failures;Proceedings of the ACM SIGCOMM 2024 Conference;2024-08-04

2. NetDiceSyn: Multi-Property Probabilistic Verification of Network Configurations;2023 IEEE/ACM 31st International Symposium on Quality of Service (IWQoS);2023-06-19

3. Design and Verification of 1X5 ROUTER;2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon);2022-10-16

4. Symbolic router execution;Proceedings of the ACM SIGCOMM 2022 Conference;2022-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3