Regular Languages Are Church-Rosser Congruential

Author:

Diekert Volker1,Kufleitner Manfred1,Reinhardt Klaus2,Walter Tobias1

Affiliation:

1. University of Stuttgart

2. University of Tübingen

Abstract

This article shows a general result about finite monoids and weight reducing string rewriting systems. As a consequence it proves a long standing conjecture in formal language theory: All regular languages are Church-Rosser congruential. The class of Church-Rosser congruential languages was introduced by McNaughton, Narendran, and Otto in 1988. A language L is Church-Rosser congruential if there exists a finite, confluent, and length-reducing semi-Thue system S such that L is a finite union of congruence classes modulo S . It was known that there are deterministic linear context-free languages which are not Church-Rosser congruential, but the conjecture was that all regular languages are of this form. The article offers a stronger statement: A language is regular if and only if it is strongly Church-Rosser congruential. It is the journal version of the conference abstract which was presented at ICALP 2012.

Funder

German Research Foundation

NUS

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference14 articles.

1. R. Book and F. Otto. 1993. String-Rewriting Systems. Springer. R. Book and F. Otto. 1993. String-Rewriting Systems. Springer.

2. Growing Context-Sensitive Languages and Church–Rosser Languages

3. Pure future local temporal logics are expressively complete for Mazurkiewicz traces

4. V. Diekert M. Kufleitner K. Reinhardt and T. Walter . 2012 a. Regular languages are Church-Rosser congruential. In Proceedings of the International Colloquium on Automata Languages and Programming (ICALP'12) Part II. A. Czumaj K. Mehlhorn A. Pitts and R. Wattenhofer Eds. Lecture Notes in Computer Science Series vol. 7392 Springer-Verlag 177--188. 10.1007/978-3-642-31585-5_19 V. Diekert M. Kufleitner K. Reinhardt and T. Walter. 2012a. Regular languages are Church-Rosser congruential. In Proceedings of the International Colloquium on Automata Languages and Programming (ICALP'12) Part II. A. Czumaj K. Mehlhorn A. Pitts and R. Wattenhofer Eds. Lecture Notes in Computer Science Series vol. 7392 Springer-Verlag 177--188. 10.1007/978-3-642-31585-5_19

5. Star-free languages are Church–Rosser congruential

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3