MicroFluID

Author:

Sun Wei1,Chen Yuwen1,Chen Yanjun1,Zhang Xiaopeng2,Zhan Simon3,Li Yixin1,Wu Jiecheng1,Han Teng1,Mi Haipeng2,Wang Jingxian4,Tian Feng1,Yang Xing-Dong5

Affiliation:

1. Institute of Software, Chinese Academy of Sciences, Beijing, China

2. Tsinghua University, Beijing, China

3. University of California, Berkeley, Berkeley, California, United States

4. Carnegie Mellon University, Pennsylvania, Pittsburgh, United States

5. Simon Fraser University, British Columbia, Burnaby, Canada

Abstract

RFID has been widely used for activity and gesture recognition in emerging interaction paradigms given its low cost, lightweight, and pervasiveness. However, current learning-based approaches on RFID sensing require significant efforts in data collection, feature extraction, and model training. To save data processing effort, we present MicroFluID, a novel RFID artifact based on a multiple-chip structure and microfluidic switches, which informs the input state by directly reading variable ID information instead of retrieving primitive signals. Fabricated on flexible substrates, four types of microfluidic switch circuits are designed to respond to external physical events, including pressure, bend, temperature, and gravity. By default, chips are disconnected into the circuit owing to the reserved gaps in transmission line. While external input or status change occurs, conductive liquid floating in the microfluidics channels will fill the gap(s), creating a connection to certain chip(s). In prototyping the device, we conducted a series of simulations and experiments to explore the feasibility of the multi-chip tag design, key fabrication parameters, interaction performance, and users' perceptions.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference49 articles.

1. R. Bhattacharyya C. Di Leo , C. Floerkemeier , S. Sarma , and L. Anand . 2010. RFID tag antenna based temperature sensing using shape memory polymer actuation . In SENSORS, 2010 IEEE. 2363--2368. https://doi.org/10.1109/ICSENS. 2010 .5690951 10.1109/ICSENS.2010.5690951 R. Bhattacharyya C. Di Leo, C. Floerkemeier, S. Sarma, and L. Anand. 2010. RFID tag antenna based temperature sensing using shape memory polymer actuation. In SENSORS, 2010 IEEE. 2363--2368. https://doi.org/10.1109/ICSENS.2010.5690951

2. Multi-Chip RFID Antenna Integrating Shape-Memory Alloys for Detection of Thermal Thresholds

3. A Cost-Effective UHF RFID Tag for Transmission of Generic Sensor Data in Wireless Sensor Networks

4. Enhanced UHF RFID Sensor-Tag

5. Kaixuan Chen , Dalin Zhang , Lina Yao , Bin Guo , Zhiwen Yu , and Yunhao Liu . 2021. Deep Learning for Sensor-Based Human Activity Recognition: Overview, Challenges, and Opportunities. ACM Comput. Surv. 54, 4 , Article 77 (May 2021 ), 40 pages. https://doi.org/10.1145/3447744 10.1145/3447744 Kaixuan Chen, Dalin Zhang, Lina Yao, Bin Guo, Zhiwen Yu, and Yunhao Liu. 2021. Deep Learning for Sensor-Based Human Activity Recognition: Overview, Challenges, and Opportunities. ACM Comput. Surv. 54, 4, Article 77 (May 2021), 40 pages. https://doi.org/10.1145/3447744

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Jingxian Wang: “Pushing the Limits of Battery-Free Internet-of-Things”;IEEE Pervasive Computing;2024-01

2. SweatSkin;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3