Using Bisect K-Means Clustering Technique in the Analysis of Arabic Documents

Author:

Abuaiadah Diab1

Affiliation:

1. Waikato Institute of Technology

Abstract

In this article, I have investigated the performance of the bisect K-means clustering algorithm compared to the standard K-means algorithm in the analysis of Arabic documents. The experiments included five commonly used similarity and distance functions (Pearson correlation coefficient, cosine, Jaccard coefficient, Euclidean distance, and averaged Kullback-Leibler divergence) and three leading stemmers. Using the purity measure, the bisect K-means clearly outperformed the standard K-means in all settings with varying margins. For the bisect K-means, the best purity reached 0.927 when using the Pearson correlation coefficient function, while for the standard K-means, the best purity reached 0.884 when using the Jaccard coefficient function. Removing stop words significantly improved the results of the bisect K-means but produced minor improvements in the results of the standard K-means. Stemming provided additional minor improvement in all settings except the combination of the averaged Kullback-Leibler divergence function and the root-based stemmer, where the purity was deteriorated by more than 10%. These experiments were conducted using a dataset with nine categories, each of which contains 300 documents.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reading Scene Text with Aggregated Temporal Convolutional Encoder;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-11-20

2. Hybrid approach for text categorization: A case study with Bangla news article;Journal of Information Science;2023-06

3. Social determinants of health derived from people with opioid use disorder: Improving data collection, integration and use with cross-domain collaboration and reproducible, data-centric, notebook-style workflows;Frontiers in Medicine;2023-03-02

4. The Same Size Distribution of Data Based on Unsupervised Clustering Algorithms;Advances in Artificial Systems for Logistics Engineering III;2023

5. Arabic Document Clustering: A Survey;2022 4th International Conference on Current Research in Engineering and Science Applications (ICCRESA);2022-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3