Affiliation:
1. College of Control Science and Engineering, China University of Petroleum, China
2. the Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Qilu University of Technology, China
Abstract
The rapid evolution of backdoor attacks has emerged as a significant threat to the security of autonomous driving models. An attacker injects a backdoor into the model by adding triggers to the samples, which can be activated to manipulate the model’s inference. Backdoor attacks can lead to severe consequences, such as misidentifying traffic signs during autonomous driving, posing a risk of causing traffic accidents. Recently, there has been a gradual evolution of frequency-domain backdoor attacks. However, since the change of both amplitude and its corresponding phase will significantly affect image appearance, most of the existing frequency-domain backdoor attacks change only the amplitude, which results in a suboptimal efficacy of the attack. In this work, we propose an attack called IBAQ, to solve this problem by blurring semantic information of the trigger image through the quadratic phase. Initially, we convert the trigger and benign sample to YCrCb space. Then, we perform the fast Fourier transform on the Y channel, blending the trigger image’s amplitude and quadratic phase linearly with the benign sample’s amplitude and phase. IBAQ achieves covert injection of trigger information within amplitude and phase, enhancing the attack effect. We validate the effectiveness and stealthiness of IBAQ through comprehensive experiments.
Publisher
Association for Computing Machinery (ACM)