Improving text categorization bootstrapping via unsupervised learning

Author:

Gliozzo Alfio1,Strapparava Carlo2,Dagan Ido3

Affiliation:

1. STLab-ISTC-CNR, Rome

2. FBK-IRST, Povo

3. Bar Ilan University

Abstract

We propose a text-categorization bootstrapping algorithm in which categories are described by relevant seed words. Our method introduces two unsupervised techniques to improve the initial categorization step of the bootstrapping scheme: (i) using latent semantic spaces to estimate the similarity among documents and words, and (ii) the Gaussian mixture algorithm, which differentiates relevant and nonrelevant category information using statistics from unlabeled examples. In particular, this second step maps the similarity scores to class posterior probabilities, and therefore reduces sensitivity to keyword-dependent variations in scores. The algorithm was evaluated on two text categorization tasks, and obtained good performance using only the category names as initial seeds. In particular, the performance of the proposed method proved to be equivalent to a pure supervised approach trained on 70--160 labeled documents per category.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TRGNN: Text-Rich Graph Neural Network for Few-Shot Document Filtering;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. An Attention-based Deep Relevance Model for Few-shot Document Filtering;ACM Transactions on Information Systems;2021-01-31

3. Enhanced Bootstrapping Algorithm for Automatic Annotation of Tweets;International Journal of Cognitive Informatics and Natural Intelligence;2020-04

4. Seed-Guided Deep Document Clustering;Lecture Notes in Computer Science;2020

5. Filtering and Classifying Relevant Short Text with a Few Seed Words;Data and Information Management;2019-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3