Cost-Effective Conceptual Design for Information Extraction

Author:

Termehchy Arash1,Vakilian Ali2,Chodpathumwan Yodsawalai3,Winslett Marianne3

Affiliation:

1. Oregon State University, OR

2. MIT, Cambridge, MA

3. University of Illinois at Urbana-Champaign, IL

Abstract

It is well established that extracting and annotating occurrences of entities in a collection of unstructured text documents with their concepts improves the effectiveness of answering queries over the collection. However, it is very resource intensive to create and maintain large annotated collections. Since the available resources of an enterprise are limited and/or its users may have urgent information needs, it may have to select only a subset of relevant concepts for extraction and annotation. We call this subset a conceptual design for the annotated collection. In this article, we introduce and formally define the problem of cost-effective conceptual design where, given a collection, a set of relevant concepts, and a fixed budget, one likes to find a conceptual design that most improves the effectiveness of answering queries over the collection. We provide efficient algorithms for special cases of the problem and prove it is generally NP-hard in the number of relevant concepts. We propose three efficient approximations to solve the problem: a greedy algorithm, an approximate popularity maximization (APM for short), and approximate annotation-benefit maximization (AAM for short). We show that, if there are no constraints regrading the overlap of concepts, APM is a fully polynomial time approximation scheme. We also prove that if the relevant concepts are mutually exclusive, the greedy algorithm delivers a constant approximation ratio if the concepts are equally costly, APM has a constant approximation ratio, and AAM is a fully polynomial-time approximation scheme. Our empirical results using a Wikipedia collection and a search engine query log validate the proposed formalization of the problem and show that APM and AAM efficiently compute conceptual designs. They also indicate that, in general, APM delivers the optimal conceptual designs if the relevant concepts are not mutually exclusive. Also, if the relevant concepts are mutually exclusive, the conceptual designs delivered by AAM improve the effectiveness of answering queries over the collection more than the solutions provided by APM.

Funder

NFS

a Yahoo! Key Scientific Challenges award

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference52 articles.

1. Serge Abiteboul Ioana Manolescu Philippe Rigaux Marie-Christine Rousset and Pierre Senellart. 2011. Web Data Management. Cambridge University Press. Serge Abiteboul Ioana Manolescu Philippe Rigaux Marie-Christine Rousset and Pierre Senellart. 2011. Web Data Management. Cambridge University Press.

2. Querying text databases for efficient information extraction

3. Classification-enhanced ranking

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3