Machine-verified network controllers

Author:

Guha Arjun1,Reitblatt Mark1,Foster Nate1

Affiliation:

1. Cornell University, Ithaca, NY, USA

Abstract

In many areas of computing, techniques ranging from testing to formal modeling to full-blown verification have been successfully used to help programmers build reliable systems. But although networks are critical infrastructure, they have largely resisted analysis using formal techniques. Software-defined networking (SDN) is a new network architecture that has the potential to provide a foundation for network reasoning, by standardizing the interfaces used to express network programs and giving them a precise semantics. This paper describes the design and implementation of the first machine-verified SDN controller. Starting from the foundations, we develop a detailed operational model for OpenFlow (the most popular SDN platform) and formalize it in the Coq proof assistant. We then use this model to develop a verified compiler and run-time system for a high-level network programming language. We identify bugs in existing languages and tools built without formal foundations, and prove that these bugs are absent from our system. Finally, we describe our prototype implementation and our experiences using it to build practical applications.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formally Verified Convergence of Policy-Rich DBF Routing Protocols;IEEE/ACM Transactions on Networking;2023

2. Kleene algebra modulo theories: a framework for concrete KATs;Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2022-06-09

3. Diversity-driven automated formal verification;Proceedings of the 44th International Conference on Software Engineering;2022-05-21

4. Review of Detection and Avoidance of Interference Among Multiple Applications in Software-Defined Networks;Lecture Notes in Computer Science;2022

5. Greedy Nominator Heuristic: Virtual function placement on fog resources;Concurrency and Computation: Practice and Experience;2021-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3