Guided Visibility Sampling++

Author:

Koch Thomas1,Wimmer Michael1

Affiliation:

1. TU Wien, Vienna, Austria

Abstract

Visibility computation is a common problem in the field of computer graphics. Examples include occlusion culling, where parts of the scene are culled away, or global illumination simulations, which are based on the mutual visibility of pairs of points to calculate lighting. In this paper, an aggressive from-region visibility technique called Guided Visibility Sampling++ (GVS++) is presented. The proposed technique improves the Guided Visibility Sampling algorithm through improved sampling strategies, thus achieving low error rates on various scenes, and being over four orders of magnitude faster than the original CPU-based Guided Visibility Sampling implementation. We present sampling strategies that adaptively compute sample locations and use ray casting to determine a set of triangles visible from a flat or volumetric rectangular region in space. This set is called a potentially visible set (PVS). Based on initial random sampling, subsequent exploration phases progressively grow an intermediate solution. A termination criterion is used to terminate the PVS search. A modern implementation using the Vulkan graphics API and RTX ray tracing is discussed. Furthermore, we show optimizations that allow for an implementation that is over 20 times faster than a naive implementation.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3