How Do Home Computer Users Browse the Web?

Author:

Crichton Kyle1,Christin Nicolas1,Cranor Lorrie Faith1

Affiliation:

1. Carnegie Mellon University Pittsburgh, Forbes Avenue, Pittsburgh

Abstract

With the ubiquity of web tracking, information on how people navigate the internet is abundantly collected yet, due to its proprietary nature, rarely distributed. As a result, our understanding of user browsing primarily derives from small-scale studies conducted more than a decade ago. To provide an broader updated perspective, we analyze data from 257 participants who consented to have their home computer and browsing behavior monitored through the Security Behavior Observatory. Compared to previous work, we find a substantial increase in tabbed browsing and demonstrate the need to include tab information for accurate web measurements. Our results confirm that user browsing is highly centralized, with 50% of internet use spent on 1% of visited websites. However, we also find that users spend a disproportionate amount of time on low-visited websites, areas with a greater likelihood of containing risky content. We then identify the primary gateways to these sites and discuss implications for future research.

Funder

National Security Agency (NSA) Science of Security Lablet at Carnegie Mellon University

Carnegie Bosch Institute (CBI) Fellowship

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative Threat Variants for Detection Tools Assessment;IEEE Reliability Magazine;2024-09

2. Naturalistic Digital Behavior Predicts Cognitive Abilities;ACM Transactions on Computer-Human Interaction;2024-06-30

3. Tor Trace in Images: A Novel Multi-Tab Website Fingerprinting Attack With Object Detection;The Computer Journal;2024-05-04

4. TIGER: Tor Traffic Generator for Realistic Experiments;Proceedings of the 22nd Workshop on Privacy in the Electronic Society;2023-11-26

5. Formal Modeling and Analysis of User Activity Sequence in Online Social Networks: A Stochastic Petri Net-Based Approach;IEEE Transactions on Computational Social Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3