Multi-Source and Multi-modal Deep Network Embedding for Cross-Network Node Classification

Author:

Yang Hongwei1ORCID,He Hui1ORCID,Zhang Weizhe1ORCID,Wang Yan2ORCID,Jing Lin1ORCID

Affiliation:

1. Harbin Institute of Technology, Harbin, China

2. School of Computing, Macquarie University, Sydney, Australia

Abstract

In recent years, to address the issue of networked data sparsity in node classification tasks, cross-network node classification (CNNC) leverages the richer information from a source network to enhance the performance of node classification in the target network, which typically has sparser information. However, in real-world applications, labeled nodes may be collected from multiple sources with multiple modalities (e.g., text, vision, and video). Naive application of single-source and single-modal CNNC methods may result in sub-optimal solutions. To this end, in this article, we propose a model called Multi-source and Multi-modal Cross-network Deep Network Embedding (M 2 CDNE) for cross-network node classification. In M 2 CDNE, we propose a deep multi-modal network embedding approach that combines the extracted deep multi-modal features to make the node vector representations network invariant. In addition, we apply dynamic adversarial adaptation to assess the significance of marginal and conditional probability distributions between each source and target network to make node vector representations label discriminative. Furthermore, we devise to classify nodes in the target network through the related source classifier and aggregate different predictions utilizing respective network weights, corresponding to the discrepancy between each source and target network. Extensive experiments performed on real-world datasets demonstrate that the proposed M 2 CDNE significantly outperforms the state-of-the-art approaches.

Funder

Joint Funds of the National Natural Science Foundation of China

National Key Research and Development Program of China

Key-Area Research and Development Program of Guangdong Province

Fundamental Research Funds for the Central Universities

Publisher

Association for Computing Machinery (ACM)

Reference64 articles.

1. Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. 2020. N-gcn: Multi-scale graph convolution for semi-supervised node classification. In Uncertainty in Artificial Intelligence. PMLR, 841–851.

2. Analysis of representations for domain adaptation;Ben-David Shai;Advances in Neural Information Processing Systems,2007

3. Qi Chen and Mario Marchand. 2023. Algorithm-dependent bounds for representation learning of multi-source domain adaptation. In International Conference on Artificial Intelligence and Statistics. PMLR, 10368–10394.

4. Locality-Sensitive Deconvolution Networks with Gated Fusion for RGB-D Indoor Semantic Segmentation

5. NUS-WIDE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3