Cache efficient bidiagonalization using BLAS 2.5 operators

Author:

Howell Gary W.1,Demmel James W.2,Fulton Charles T.3,Hammarling Sven4,Marmol Karen5

Affiliation:

1. North Carolina State University, Raleigh, NC

2. University of California, Berkeley, CA

3. Florida Institute of Technology, Melbourne, FL

4. University of Manchester, UK

5. Harris Corporation, Melbourne, FL

Abstract

On cache based computer architectures using current standard algorithms, Householder bidiagonalization requires a significant portion of the execution time for computing matrix singular values and vectors. In this paper we reorganize the sequence of operations for Householder bidiagonalization of a general m × n matrix, so that two (_GEMV) vector-matrix multiplications can be done with one pass of the unreduced trailing part of the matrix through cache. Two new BLAS operations approximately cut in half the transfer of data from main memory to cache, reducing execution times by up to 25 per cent. We give detailed algorithm descriptions and compare timings with the current LAPACK bidiagonalization algorithm.

Funder

National Science Foundation

Pittsburgh Supercomputing Center

National Institutes of Health

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference29 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward a BLAS library truly portable across different accelerator types;The Journal of Supercomputing;2019-06-10

2. Cache-efficient implementation and batching of tridiagonalization on manycore CPUs;Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region;2019-01-14

3. Sparse supernodal solver using block low-rank compression: Design, performance and analysis;Journal of Computational Science;2018-07

4. The Singular Value Decomposition: Anatomy of Optimizing an Algorithm for Extreme Scale;SIAM Review;2018-01

5. Optimizing CUDA code by kernel fusion: application on BLAS;The Journal of Supercomputing;2015-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3