Better Distance Preservers and Additive Spanners

Author:

Bodwin Greg1,Williams Virginia Vassilevska2

Affiliation:

1. University of Michigan EECS, Ann Arbor, MI, USA

2. MIT EECS, Cambridge, MA, USA

Abstract

We study two popular ways to sketch the shortest path distances of an input graph. The first is distance preservers , which are sparse subgraphs that agree with the distances of the original graph on a given set of demand pairs. Prior work on distance preservers has exploited only a simple structural property of shortest paths, called consistency , stating that one can break shortest path ties such that no two paths intersect, split apart, and then intersect again later. We prove that consistency alone is not enough to understand distance preservers, by showing both a lower bound on the power of consistency and a new general upper bound that polynomially surpasses it. Specifically, our new upper bound is that any p demand pairs in an n -node undirected unweighted graph have a distance preserver on O( n 2/3 p 2/3 + np 1/3 edges. We leave a conjecture that the right bound is O ( n 2/3 p 2/3 + n ) or better. The second part of this paper leverages these distance preservers in a new construction of additive spanners , which are subgraphs that preserve all pairwise distances up to an additive error function. We give improved error bounds for spanners with relatively few edges; for example, we prove that all graphs have spanners on O(n) edges with + O ( n 3/7 + ε ) error. Our construction can be viewed as an extension of the popular path-buying framework to clusters of larger radii.

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference31 articles.

1. The 4/3 additive spanner exponent is tight;Abboud Amir;Journal of the ACM (JACM),2017

2. Fast estimation of diameter and shortest paths (without matrix multiplication);Aingworth Donald;SIAM J. Comput.,1999

3. On sparse spanners of weighted graphs;Althöfer Ingo;Discrete & Computational Geometry,1993

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reachability Preservers: New Extremal Bounds and Approximation Algorithms;SIAM Journal on Computing;2024-03-13

2. Path-Reporting Distance Oracles with Logarithmic Stretch and Size O(n log log n);2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

3. Bridge Girth: A Unifying Notion in Network Design;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3