Internet-scale Insecurity of Consumer Internet of Things

Author:

Mangino Antonio1,Pour Morteza Safaei1,Bou-Harb Elias1

Affiliation:

1. The Cyber Center for Security and Analytics, UT at San Antonio (UTSA)

Abstract

The number of Internet-of-Things (IoT) devices actively communicating across the Internet is continually increasing, as these devices are deployed across a variety of sectors, constantly transferring private data across the Internet. Due to the extensive deployment of such devices, the continuous discovery and persistence of IoT-centric vulnerabilities in protocols, applications, hardware, and the improper management of such IoT devices has resulted in the rampant, uncontrolled spread of malware threatening consumer IoT devices. To this end, this work adopts a novel, macroscopic methodology for fingerprinting Internet-scale compromised IoT devices, revealing crucial cyber threat intelligence on the insecurity of consumer IoT devices. By developing data-driven techniques rooted in machine learning methods and analyzing 3.6 TB of network traffic data, we discover 855,916 compromised IP addresses, with 310,164 fingerprinted as IoT. Further analysis reveals China and Brazil to be hosting the most significant population of compromised IoT devices (100,000 and 55,000, respectively). Additionally, we provide a longitudinal analysis on data from one year ago against this work, revealing the evolving trends of IoT exploitation, such as the increased number of vendors targeted by malware, rising from 50 to 131. Moreover, countries such as China (420% increased infected IoT count) and Indonesia (177% increased infected IoT count) have seen notably high increases in infection rates. Last, we compare our geographic results against Global Cybersecurity Index (GCI) ratings, verifying that countries with high GCI ratings, such as the Netherlands and Germany, had relatively low infection rates. However, upon further inspection, we find that the GCI rate does not accurately represent the consumer IoT market, with countries such as China and Russia being rated with “high” CGI scores, yet hosting a large population of infected consumer IoT devices.

Funder

National Science Foundation - Office of Advanced Cyberinfrastructure

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Open Set Dandelion Network for IoT Intrusion Detection;ACM Transactions on Internet Technology;2024-01-09

2. Responses of the European IoT Ecosystem to the European General Data Protection Regulation;2023-12-12

3. Effects of the GDPR in Southeast Asia vs. Europe - A Large-Scale Analysis of IoT Devices;2023 IEEE 8th International Conference On Software Engineering and Computer Systems (ICSECS);2023-08-25

4. A Novel Approach for Detecting and Preventing Security attacks using Machine Learning in IoT;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

5. A Comprehensive Survey of Recent Internet Measurement Techniques for Cyber Security;Computers & Security;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3