Affiliation:
1. Heidelberg University, Germany
Abstract
SIMD vectorization has lately become a key challenge in high-performance computing. However, hand-written explicitly vectorized code often poses a threat to the software’s sustainability. In this publication, we solve this sustainability and performance portability issue by enriching the simulation framework dune-pdelab with a code generation approach. The approach is based on the well-known domain-specific language UFL but combines it with loopy, a more powerful intermediate representation for the computational kernel. Given this flexible tool, we present and implement a new class of vectorization strategies for the assembly of Discontinuous Galerkin methods on hexahedral meshes exploiting the finite element’s tensor product structure. The performance-optimal variant from this class is chosen by the code generator through an auto-tuning approach. The implementation is done within the open source PDE software framework Dune and the discretization module dune-pdelab. The strength of the proposed approach is illustrated with performance measurements for DG schemes for a scalar diffusion reaction equation and the Stokes equation. In our measurements, we utilize both the AVX2 and the AVX512 instruction set, achieving 30% to 40% of the machine’s theoretical peak performance for one matrix-free application of the operator.
Funder
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献