Automatic Code Generation for High-performance Discontinuous Galerkin Methods on Modern Architectures

Author:

Kempf Dominic1ORCID,Heß René1,Müthing Steffen1,Bastian Peter1

Affiliation:

1. Heidelberg University, Germany

Abstract

SIMD vectorization has lately become a key challenge in high-performance computing. However, hand-written explicitly vectorized code often poses a threat to the software’s sustainability. In this publication, we solve this sustainability and performance portability issue by enriching the simulation framework dune-pdelab with a code generation approach. The approach is based on the well-known domain-specific language UFL but combines it with loopy, a more powerful intermediate representation for the computational kernel. Given this flexible tool, we present and implement a new class of vectorization strategies for the assembly of Discontinuous Galerkin methods on hexahedral meshes exploiting the finite element’s tensor product structure. The performance-optimal variant from this class is chosen by the code generator through an auto-tuning approach. The implementation is done within the open source PDE software framework Dune and the discretization module dune-pdelab. The strength of the proposed approach is illustrated with performance measurements for DG schemes for a scalar diffusion reaction equation and the Stokes equation. In our measurements, we utilize both the AVX2 and the AVX512 instruction set, achieving 30% to 40% of the machine’s theoretical peak performance for one matrix-free application of the operator.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel Pattern Language Code Generation;Proceedings of the 15th International Workshop on Programming Models and Applications for Multicores and Manycores;2024-03-03

2. A benchmark study on reactive two-phase flow in porous media: Part II - results and discussion;Computational Geosciences;2024-02-03

3. Toward Interpretable Graph Tensor Convolution Neural Network for Code Semantics Embedding;ACM Transactions on Software Engineering and Methodology;2023-07-21

4. Multi-discretization domain specific language and code generation for differential equations;Journal of Computational Science;2023-04

5. Enhancing data locality of the conjugate gradient method for high-order matrix-free finite-element implementations;The International Journal of High Performance Computing Applications;2022-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3