Speech Interaction with Personal Assistive Robots Supporting Aging at Home for Individuals with Alzheimer’s Disease

Author:

Rudzicz Frank1,Wang Rosalie2,Begum Momotaz3,Mihailidis Alex4

Affiliation:

1. Toronto Rehabilitation Institute; University of Toronto, Toronto Ontario

2. Toronto Rehabilitation Institute, Toronto Ontario

3. University of Massachusetts Lowell, Massachusetts

4. University of Toronto; Toronto Rehabilitation Institute, Toronto Ontario

Abstract

Increases in the prevalence of dementia and Alzheimer’s disease (AD) are a growing challenge in many nations where healthcare infrastructures are ill-prepared for the upcoming demand for personal caregiving. To help individuals with AD live at home for longer, we are developing a mobile robot, called ED, intended to assist with activities of daily living through visual monitoring and verbal prompts in cases of difficulty. In a series of experiments, we study speech-based interactions between ED and each of 10 older adults with AD as the latter complete daily tasks in a simulated home environment. Traditional automatic speech recognition is evaluated in this environment, along with rates of verbal behaviors that indicate confusion or trouble with the conversation. Analysis reveals that speech recognition remains a challenge in this setup, especially during household tasks with individuals with AD. Across the verbal behaviors that indicate confusion, older adults with AD are very likely to simply ignore the robot, which accounts for over 40% of all such behaviors when interacting with the robot. This work provides a baseline assessment of the types of technical and communicative challenges that will need to be overcome for robots to be used effectively in the home for speech-based assistance with daily living.

Funder

Alzheimer Society

Natural Sciences and Engineering Research Council of Canada

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Human-Computer Interaction

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3