The design and analysis of a cache architecture for texture mapping

Author:

Hakura Ziyad S.1,Gupta Anoop1

Affiliation:

1. Computer Systems Laboratory, Stanford University, Stanford, CA

Abstract

The effectiveness of texture mapping in enhancing the realism of computer generated imagery has made support for real-time texture mapping a critical part of graphics pipelines. Despite a recent surge in interest in three-dimensional graphics from computer architects, high-quality high-speed texture mapping has so far been confined to costly hardware systems that use brute-force techniques to achieve high performance. One obstacle faced by designers of texture mapping systems is the requirement of extremely high bandwidth to texture memory. High bandwidth is necessary since there are typically tens to hundreds of millions of accesses to texture memory per second. In addition, to achieve the high clock rates required in graphics pipelines, low-latency access to texture memory is needed. In this paper, we propose the use of texture image caches to alleviate the above bottlenecks, and evaluate various tradeoffs that arise in such designs.We find that the factors important to cache behavior are (i) the representation of texture images in memory, (ii) the rasterization order on screen and (iii) the cache organization. Through a detailed investigation of these issues, we explore the best way to exploit locality of reference and determine whether this technique is robust with respect to different scenes and different amounts of texture. Overall, we observe that there is a significant amount of temporal and spatial locality and that the working set sizes are relatively small (at most 16KB) across all cases that we studied. Consequently, the memory bandwidth requirements of a texture cache system are substantially lower (at least three times and as much as fifteen times) than the memory bandwidth requirements of a system which achieves equivalent performance but does not utilize a cache. These results are very encouraging and indicate that caching is a promising approach to designing memory systems for texture mapping.

Publisher

Association for Computing Machinery (ACM)

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization strategies for GPUs: an overview of architectural approaches;International Journal of Parallel, Emergent and Distributed Systems;2023-02-05

2. Voting for Distortion Points in Geometric Processing;IEEE Transactions on Visualization and Computer Graphics;2021-04-01

3. D-SOAP: Dynamic Spatial Orientation Affinity Prediction for Caching in Multi-Orientation Memory Systems;2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO);2020-10

4. Energy-Efficient 360-Degree Video Rendering on FPGA via Algorithm-Architecture Co-Design;Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays;2020-02-23

5. An efficient GPU approach for designing 3D cultural heritage information systems;Journal of Cultural Heritage;2020-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3