Optimizing aggregate array computations in loops

Author:

Liu Yanhong A.1,Stoller Scott D.1,Li Ning2,Rothamel Tom1

Affiliation:

1. State University of New York at Stony Brook, Stony Brook, NY

2. IBM Almaden, San Jose, CA

Abstract

An aggregate array computation is a loop that computes accumulated quantities over array elements. Such computations are common in programs that use arrays, and the array elements involved in such computations often overlap, especially across iterations of loops, resulting in significant redundancy in the overall computations. This article presents a method and algorithms that eliminate such overlapping aggregate array redundancies and shows analytical and experimental performance improvements. The method is based on incrementalization, that is, updating the values of aggregate array computations from iteration to iteration rather than computing them from scratch in each iteration. This involves maintaining additional values not maintained in the original program. We reduce various analysis problems to solving inequality constraints on loop variables and array subscripts, and we apply results from work on array data dependence analysis. For aggregate array computations that have significant redundancy, incrementalization produces drastic speedup compared to previous optimizations; when there is little redundancy, the benefit might be offset by cache effects and other factors. Previous methods for loop optimizations of arrays do not perform incrementalization, and previous techniques for loop incrementalization do not handle arrays.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incremental Computation: What Is the Essence? (Invited Contribution);Proceedings of the 2024 ACM SIGPLAN International Workshop on Partial Evaluation and Program Manipulation;2024-01-11

2. Full-program induction: verifying array programs sans loop invariants;International Journal on Software Tools for Technology Transfer;2022-09-29

3. Reverse engineering for reduction parallelization via semiring polynomials;Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2021-06-18

4. Simplifying dependent reductions in the polyhedral model;Proceedings of the ACM on Programming Languages;2021-01-04

5. Diffy: Inductive Reasoning of Array Programs Using Difference Invariants;Computer Aided Verification;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3