A Framework for Evaluating and Optimizing FPGA-Based SoCs for Aerospace Computing

Author:

Wulf Nicholas1,George Alan D.1,Gordon-Ross Ann1

Affiliation:

1. NSF Center for High-Performance Reconfigurable Computing (CHREC), University of Florida

Abstract

On-board processing systems are often deployed in harsh aerospace environments and must therefore adhere to stringent constraints such as low power, small size, and high dependability in the presence of faults. Field-programmable gate arrays (FPGAs) are often an attractive option for designers seeking low-power, high-performance devices. However, unlike nonreconfigurable devices, radiation effects can alter an FPGA’s functionality instead of just the device’s data, requiring designers to consider fault-tolerant strategies to mitigate these effects. In this article, we present a framework to ease these system design challenges and aid designers in considering a broad range of devices and fault-tolerant strategies for on-board processing, highlighting the most promising options and tradeoffs early in the design process. This article focuses on the power, dependability, and lifetime evaluation metrics, which our framework calculates and leverages to evaluate the effectiveness of varying system-on-chip (SoC) designs. Finally, we use our framework to evaluate SoC designs for a case study on a hyperspectral-imaging (HSI) mission to demonstrate our framework’s ability to identify efficient and effective SoC designs.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and implementation of hydrogen economy using artificial neural network on field programmable gate array;International Journal of Hydrogen Energy;2020-08

2. Scrubbing-Aware Placement for Reliable FPGA Systems;IEEE Transactions on Emerging Topics in Computing;2020-07-01

3. Comparative Analysis of Present and Future Space-Grade Processors with Device Metrics;Journal of Aerospace Information Systems;2017-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3