Automated Pricing in a Multiagent Prediction Market Using a Partially Observable Stochastic Game

Author:

Jumadinova Janyl1,Dasgupta Prithviraj2

Affiliation:

1. University of Nebraska at Omaha, Meadville, PA

2. University of Nebraska at Omaha, Omaha, NE

Abstract

Prediction markets offer an efficient market-based mechanism to aggregate large amounts of dispersed or distributed information from different people to predict the possible outcome of future events. Recently, automated prediction markets where software trading agents perform market operations such as trading and updating beliefs on behalf of humans have been proposed. A challenging aspect in automated prediction markets is to develop suitable techniques that can be used by automated trading agents to update the price at which they should trade securities related to an event so that they can increase their profit. This problem is nontrivial, as the decision to trade and the price at which trading should occur depends on several dynamic factors, such as incoming information related to the event for which the security is being traded, the belief-update mechanism and risk attitude of the trading agent, and the trading decision and trading prices of other agents. To address this problem, we have proposed a new behavior model for trading agents based on a game-theoretic framework called partially observable stochastic game with information (POSGI). We propose a correlated equilibrium (CE)-based solution strategy for this game that allows each agent to dynamically choose an action (to buy or sell or hold) in the prediction market. We have also performed extensive simulation experiments using the data obtained from the Intrade prediction market for four different prediction markets. Our results show that our POSGI model and CE strategy produces prices that are strongly correlated with the prices of the real prediction markets. Results comparing our CE strategy with five other strategies commonly used in similar market show that our CE strategy improves price predictions and provides higher utilities to the agents compared to other existing strategies.

Funder

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distilling wisdom of crowds in online communities: A novel prediction market constructed with comment posters;Decision Support Systems;2024-05

2. Challenges in Collective Intelligence: A Survey;2023 46th MIPRO ICT and Electronics Convention (MIPRO);2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3