Fault localization prioritization

Author:

Yoo Shin1,Harman Mark1,Clark David1

Affiliation:

1. University College London, UK

Abstract

Test case prioritization techniques seek to maximize early fault detection. Fault localization seeks to use test cases already executed to help find the fault location. There is a natural interplay between the two techniques; once a fault is detected, we often switch focus to fault fixing, for which localization may be a first step. In this article we introduce the Fault Localization Prioritization (FLP) problem, which combines prioritization and localization. We evaluate three techniques: a novel FLP technique based on information theory, FLINT (Fault Localization using INformation Theory), that we introduce in this article, a standard Test Case Prioritization (TCP) technique, and a “test similarity technique” used in previous work. Our evaluation uses five different releases of four software systems. The results indicate that FLP and TCP can statistically significantly reduce fault localization costs for 73% and 76% of cases, respectively, and that FLINT significantly outperforms similarity-based localization techniques in 52% of the cases considered in the study.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Traceback: A Fault Localization Technique for Molecular Programs;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. Triggering Modes in Spectrum-Based Multi-location Fault Localization;Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2023-11-30

3. Boosting Fuzzer Efficiency: An Information Theoretic Perspective;Communications of the ACM;2023-10-20

4. Static Class-Level Approach For Test Impact Analysis;2023 20th International Joint Conference on Computer Science and Software Engineering (JCSSE);2023-06-28

5. A Systematic Literature Review on Test Case Prioritization Techniques;Agile Software Development;2023-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3