Network intrusion detection using Machine Learning approach

Author:

Rachidi Zhour1,Chougdali Khalid1,Kobbane Abdellatif2,Ben-Othman Jalel3

Affiliation:

1. National School of Applied Sciences, Ibn Tofail University, Morocco

2. ENSIAS University Mohammed V, Morocco

3. University of Paris 13, France

Publisher

ACM

Reference13 articles.

1. AGARWAL Arushi SHARMA Purushottam ALSHEHRI Mohammed  et al. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Computer Science 2021 vol. 7 p. e437 AGARWAL Arushi SHARMA Purushottam ALSHEHRI Mohammed  et al. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Computer Science 2021 vol. 7 p. e437

2. Intrusion detection based on distance combination;Beauquier J.;International Journal of Computer Science,2008

3. REVATHI , S. et MALATHI , A. A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection. International Journal of Engineering Research & Technology (IJERT) , 2013 , vol. 2 , no 12, p. 1848-1853 REVATHI, S. et MALATHI, A. A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection. International Journal of Engineering Research & Technology (IJERT), 2013, vol. 2, no 12, p. 1848-1853

4. PANDEY , Amit et JAIN , Achin. Comparative analysis of KNN algorithm using various normalization techniques. International Journal of Computer Network and Information Security , 2017 , vol. 9 , no 11, p. 36 PANDEY, Amit et JAIN, Achin. Comparative analysis of KNN algorithm using various normalization techniques. International Journal of Computer Network and Information Security, 2017, vol. 9, no 11, p. 36

5. AGARWAL Arushi SHARMA Purushottam ALSHEHRI Mohammed  et al. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Computer Science 2021 vol. 7 p. e437 AGARWAL Arushi SHARMA Purushottam ALSHEHRI Mohammed  et al. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Computer Science 2021 vol. 7 p. e437

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Feature Selection Study on the Bot-IoT Dataset Using Ensemble Classification Techniques;2024 IEEE International Conference on Contemporary Computing and Communications (InC4);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3