Affiliation:
1. State Key Lab. for Novel Software Technology, Nanjing University, Nanjing, China
2. Temple University, Philadelphia, PA
3. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Abstract
Wireless energy transfer has been widely studied in recent decades, with existing works mainly focused on maximizing network lifetime, optimizing charging efficiency, and optimizing charging quality. All these works use a charging model with the linear superposition, which may not be the most accurate. We apply a nonlinear superposition model, and we consider the Fast Charging Scheduling problem (FCS): Given multiple chargers and a group of sensors, how can the chargers be optimally scheduled over the time dimension so that the total charging time is minimized and each sensor has at least energy
E
? We prove that FCS is NP-complete and propose a 2-approximation algorithm to solve it in one-dimensional (1D) line. In a 2D plane, we first consider a special case of FCS, where the initial phases of all chargers are the same, and propose an algorithm to solve it, which has a bound. Then we propose an algorithm to solve FCS in a general 2D plane. Unlike other algorithms, our algorithm does not need to calculate the combined energy of every possible combination of chargers in advance, which greatly reduces the complexity. Extensive simulations demonstrate that the performance of our algorithm performs almost as good as the optimal algorithm.
Funder
National Science Foundation
National Natural Science Foundation of China
National Key Research and Development Program of China Stem Cell and Translational Research
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献