PyOED: An Extensible Suite for Data Assimilation and Model-Constrained Optimal Design of Experiments

Author:

Chowdhary Abhijit1ORCID,Ahmed Shady E.2ORCID,Attia Ahmed3ORCID

Affiliation:

1. Mathematics Department, North Carolina State University, Raleigh, North Carolina, USA

2. School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma, USA

3. Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, Illinois, USA

Abstract

This article describes PyOED, a highly extensible scientific package that enables developing and testing model-constrained optimal experimental design (OED) for inverse problems. Specifically, PyOED aims to be a comprehensive Python toolkit for model-constrained OED . The package targets scientists and researchers interested in understanding the details of OED formulations and approaches. It is also meant to enable researchers to experiment with standard and innovative OED technologies with a wide range of test problems (e.g., simulation models). OED, inverse problems (e.g., Bayesian inversion), and data assimilation (DA) are closely related research fields, and their formulations overlap significantly. Thus, PyOED is continuously being expanded with a plethora of Bayesian inversion, DA, and OED methods as well as new scientific simulation models, observation error models, and observation operators. These pieces are added such that they can be permuted to enable testing OED methods in various settings of varying complexities. The PyOED core is completely written in Python and utilizes the inherent object-oriented capabilities; however, the current version of PyOED is meant to be extensible rather than scalable. Specifically, PyOED is developed to “enable rapid development and benchmarking of OED methods with minimal coding effort and to maximize code reutilization.” This article provides a brief description of the PyOED layout and philosophy and provides a set of exemplary test cases and tutorials to demonstrate the potential of the package.

Funder

U.S. Department of Energy, Office of Science

Advanced Scientific Computing Research and Office of Nuclear Physics, Scientific Discovery through Advanced Computing (SciDAC) Program through the FASTMath Institute

Argonne National Laboratory during his appointment as a 2021 Wallace Givens Associate

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3