Deciding Context Unification

Author:

Jeż Artur1ORCID

Affiliation:

1. Institute of Computer Science, University of Wrocław, Poland

Abstract

In first-order term unification, variables represent well-formed terms over a given signature, and we are to solve equations built using function symbols from the signature and such variables; this problem is well-known to be decidable (in linear time). In second-order term unification, the variables take arguments (i.e., other terms) and a substitution uses those arguments an arbitrary number of times; for instance, an equation f ( X ( c ), X ( c )) = X ( f ( c , c )) has a solution X = •, where • is a special symbol denoting the place in which the argument is substituted. Under this substitution, both sides evaluate to f ( c , c ). There are other solutions, for instance X = f (•,•), which evaluates both sides to f ( f ( c , c ), f ( c , c )); in general, a solution that evaluates both sides to full binary tree of arbitrary height is easy to construct. Second-order unification is in general undecidable. Context unification is a natural problem in between first- and second-order unification—we deal with equations over terms, the variables take arguments, but we restrict the set of solutions: The argument is used exactly once. Formally, contexts are terms with exactly one occurrence of the special symbol • and in context unification, we are given an equation over terms with variables representing contexts and ask about the satisfiability of this equation. For instance, when the aforementioned equation f ( X ( c ), X ( c )) = X ( f ( c , c )) is treated as a context unification problem, then it has exactly one solution: X = •. Other substitutions that are solutions of it as an instance of the second-unification problem, say X = f (•, •), are not valid, as • is used more than once. Context unification also generalizes satisfiability of word equations, which is decidable (in PSPACE). The decidability status of context unification remained unknown for almost two decades. In this article, we show that context unification is in PSPACE (in EXPTIME , when tree regular constraints are also allowed). Those results are obtained by extending the recently developed recompression technique, which was previously defined for strings and used to obtain a new PSPACE algorithm for satisfiability of word equations. In this article, the technique is generalized to trees, and the corresponding algorithm is generalized from word equations to context unification. The idea of recompression is to apply simple compression rules (replacing pairs of neighboring function symbols) to the solution of the context equation; to this end, we appropriately modify the equation (without the knowledge of the actual solution) so compressing the solution can be simulated by compressing parts of the equation. It is shown that if the compression operations are appropriately chosen, then the size of the instance is polynomial during the whole algorithm, thus giving a PSPACE-upper bound.

Funder

Narodowe Centrum Nauki

Alexander von Humboldt-Stiftung

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some techniques for reasoning automatically on co-inductive data structures;Journal of Logic and Computation;2023-06-06

2. Word equations in non-deterministic linear space;Journal of Computer and System Sciences;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3