Interaction Models for Detecting Nodal Activities in Temporal Social Media Networks

Author:

Chung Wingyan1ORCID,Rao Bingbing2,Wang Liqiang2

Affiliation:

1. School of Modeling, Simulation & Training, University of Central Florida, Orlando, Florida, U.S.A. and Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong

2. Department of Computer Science, University of Central Florida, Orlando, Florida, U.S.A.

Abstract

Detecting nodal activities in dynamic social networks has strategic importance in many applications, such as online marketing campaigns and homeland security surveillance. How peer-to-peer exchanges in social media can facilitate nodal activity detection is not well explored. Existing models assume network nodes to be static in time and do not adequately consider features from social theories. This research developed and validated two theory-based models, Random Interaction Model (RIM) and Preferential Interaction Model (PIM), to characterize temporal nodal activities in social media networks of human agents. The models capture the network characteristics of randomness and preferential interaction due to community size, human bias, declining connection cost, and rising reachability. The models were compared against three benchmark models (abbreviated as EAM, TAM, and DBMM) using a social media community consisting of 790,462 users who posted over 3,286,473 tweets and formed more than 3,055,797 links during 2013–2015. The experimental results show that both RIM and PIM outperformed EAM and TAM significantly in accuracy across different dates and time windows. Both PIM and RIM scored significantly smaller errors than DBMM did. Structural properties of social networks were found to provide a simple and yet accurate approach to predicting model performances. These results indicate the models’ strong capability of accounting for user interactions in real-world social media networks and temporal activity detection. The research should provide new approaches for temporal network activity detection, develop relevant new measures, and report new findings from large social media datasets.

Funder

U.S. Department of State

Intel Corporation

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3