1. 013)]% bengio2013estimating, Yoshua Bengio , Nicholas Léonard , and Aaron Courville . 2013. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 ( 2013 ). 013)]% bengio2013estimating, Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013).
2. Mix and Match: A Novel FPGA-Centric Deep Neural Network Quantization Framework
3. 019)]% cheng2019uL2Q, Gong Cheng , Lu Ye , Li Tao , Zhang Xiaofan , Hao Cong , Chen Deming , and Chen Yao . 2019 . μL2Q: An Ultra-Low Loss Quantization Method for DNN . The 2019 International Joint Conference on Neural Networks (IJCNN) (2019), 1--8. 019)]% cheng2019uL2Q, Gong Cheng, Lu Ye, Li Tao, Zhang Xiaofan, Hao Cong, Chen Deming, and Chen Yao. 2019. μL2Q: An Ultra-Low Loss Quantization Method for DNN. The 2019 International Joint Conference on Neural Networks (IJCNN) (2019), 1--8.
4. 018)]% choi2018pact, Jungwook Choi , Zhuo Wang , Swagath Venkataramani , Pierce I-Jen Chuang , Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. 2018 . Pact : Parameterized clipping activation for quantized neural networks. arXiv preprint arXiv:1805.06085 (2018). 018)]% choi2018pact, Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. 2018. Pact: Parameterized clipping activation for quantized neural networks. arXiv preprint arXiv:1805.06085 (2018).
5. Exploration of Low Numeric Precision Deep Learning Inference Using Intel® FPGAs