Matrix hypercontractivity, streaming algorithms and LDCs: the large alphabet case

Author:

Arunachalam Srinivasan1ORCID,Doriguello Joao F.23ORCID

Affiliation:

1. IBM, Yorktown Heights, USA

2. Alfréd Rényi Institute of Mathematics, Budapest, Hungary

3. Centre for Quantum Technologies, National University of Singapore, Singapore Singapore

Abstract

We prove a hypercontractive inequality for matrix-valued functions defined over large alphabets. In order to do so, we prove a generalization of the powerful 2-uniform convexity inequality for trace norms of Ball, Carlen, Lieb (Inventiones Mathematicae’94). Using our hypercontractive inequality, we present upper and lower bounds for the communication complexity of the Hidden Hypermatching problem defined over large alphabets. We then consider streaming algorithms for approximating the value of Unique Games on a hypergraph with t -size hyperedges. By using our communication lower bound, we show that every streaming algorithm in the adversarial model achieving an ( r − ε)-approximation of this value requires Ω ( n 1 − 2/ t ) quantum space, where r is the alphabet size. We next present a lower bound for locally decodable codes ( \(\mathsf {LDC} \) ) \(\mathbb {Z}_r^n\rightarrow \mathbb {Z}_r^N \) over large alphabets with recoverability probability at least 1/ r + ε. Using hypercontractivity, we give an exponential lower bound \(N= 2^{\Omega (\varepsilon ^4 n/r^4)} \) for 2-query (possibly non-linear) \(\mathsf {LDC} \) s over \(\mathbb {Z}_r \) and using the non-commutative Khintchine inequality we prove an improved lower bound of \(N= 2^{\Omega (\varepsilon ^2 n/r^2)} \) .

Publisher

Association for Computing Machinery (ACM)

Reference74 articles.

1. Scott Aaronson. 2018. PDQP/qpoly=All. arXiv preprint arXiv:1805.08577(2018). https://doi.org/10.48550/arXiv.1805.08577

2. Graph sketches

3. The Space Complexity of Approximating the Frequency Moments

4. Sepehr Assadi and Aditi Dudeja. 2021. A Simple Semi-Streaming Algorithm for Global Minimum Cuts. In SIAM Symposium on Simplicity in Algorithms. https://api.semanticscholar.org/CorpusID:232264809

5. Sharp uniform convexity and smoothness inequalities for trace norms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3