Learning invariants using decision trees and implication counterexamples

Author:

Garg Pranav1,Neider Daniel1,Madhusudan P.1,Roth Dan1

Affiliation:

1. University of Illinois at Urbana-Champaign, USA

Abstract

Inductive invariants can be robustly synthesized using a learning model where the teacher is a program verifier who instructs the learner through concrete program configurations, classified as positive, negative, and implications. We propose the first learning algorithms in this model with implication counter-examples that are based on machine learning techniques. In particular, we extend classical decision-tree learning algorithms in machine learning to handle implication samples, building new scalable ways to construct small decision trees using statistical measures. We also develop a decision-tree learning algorithm in this model that is guaranteed to converge to the right concept (invariant) if one exists. We implement the learners and an appropriate teacher, and show that the resulting invariant synthesis is efficient and convergent for a large suite of programs.

Funder

National Science Foundation

Defense Sciences Office, DARPA

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference55 articles.

1. Competition on Software Verification (SV-COMP) benchmarks. https://svn.sosy-lab.org/software/ sv-benchmarks/tags/svcomp14/loops/. Competition on Software Verification (SV-COMP) benchmarks. https://svn.sosy-lab.org/software/ sv-benchmarks/tags/svcomp14/loops/.

2. Learning bayesian network parameters under equivalence constraints. Artificial Intelligence (0):– 2015. Learning bayesian network parameters under equivalence constraints. Artificial Intelligence (0):– 2015.

3. Synthesis of interface specifications for Java classes

4. Symbolic Compositional Verification by Learning Assumptions

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey of Machine Learning for Software-assisted Hardware Design Verification: Past, Present, and Prospect;ACM Transactions on Design Automation of Electronic Systems;2024-06-21

2. Template Decision Diagrams for Meta Control and Explainability;Communications in Computer and Information Science;2024

3. Can ChatGPT support software verification?;Lecture Notes in Computer Science;2024

4. Chronosymbolic Learning: Efficient CHC Solving with Symbolic Reasoning and Inductive Learning;Lecture Notes in Computer Science;2024

5. Relational Query Synthesis ⋈ Decision Tree Learning;Proceedings of the VLDB Endowment;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3