Affiliation:
1. NVIDIA Research, San Tomas Expy, Santa Clara, CA
2. UC Berkeley, Berkeley, CA
3. Cornell University, Hoy Rd, Ithaca, NY
4. Massachusetts Institute of Technology, Cambridge, MA
Abstract
Computer graphics seeks to deliver compelling images, generated within a computing budget, targeted at a specific display device, and ultimately viewed by an individual user. The foveated nature of human vision offers an opportunity to efficiently allocate computation and compression to appropriate areas of the viewer’s visual field, of particular importance with the rise of high-resolution and wide field-of-view display devices. However, while variations in acuity and contrast sensitivity across the field of view have been well-studied and modeled, a more consequential variation concerns peripheral vision’s degradation in the face of clutter, known as crowding. Understanding of peripheral crowding has greatly advanced in recent years, in terms of both phenomenology and modeling. Accurately leveraging this knowledge is critical for many applications, as peripheral vision covers a majority of pixels in the image. We advance computational models for peripheral vision aimed toward their eventual use in computer graphics. In particular, researchers have recently developed high-performing models of peripheral crowding, known as “pooling” models, which predict a wide range of phenomena but are computationally inefficient. We reformulate the problem as a dataflow computation, which enables faster processing and operating on larger images. Further, we account for the explicit encoding of “end stopped” features in the image, which was missing from previous methods. We evaluate our model in the context of perception of textures in the periphery, including a novel texture dataset and updated textural descriptors. Our improved computational framework may simplify development and testing of more sophisticated, complete models in more robust and realistic settings relevant to computer graphics.
Publisher
Association for Computing Machinery (ACM)
Subject
Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science
Reference91 articles.
1. DeepFovea
2. James D. Basinger, John M. Wilson, and Robert A. Fisher. 1982. The Technical Contributions of the Tactical Combat Trainer Development Program. Technical Report. Aeronatical Systems Division, Wright-Patterson AFB.
3. G. Osterberg. 1935. Topography of the Layer of Rods and Cones in the Human Retina. A. Busck. ac36000086 Retrieved from https://books.google.com/books?id=DeDrSAAACAAJ.
4. Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision
5. Fundamental limits of linear filters in the visual processing of two-dimensional signals
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Peripheral material perception;Journal of Vision;2024-04-16
2. The Perceptual Science of Augmented Reality;Annual Review of Vision Science;2023-09-15