Optimal algorithms for evaluating rank joins in database systems

Author:

Schnaitter Karl1,Polyzotis Neoklis1

Affiliation:

1. University of California, Santa Cruz, Santa Cruz, CA

Abstract

In the rank join problem, we are given a set of relations and a scoring function, and the goal is to return the join results with the top k scores. It is often the case in practice that the inputs may be accessed in ranked order and the scoring function is monotonic. These conditions allow for efficient algorithms that solve the rank join problem without reading all of the input. In this article, we present a thorough analysis of such rank join algorithms. A strong point of our analysis is that it is based on a more general problem statement than previous work, making it more relevant to the execution model that is employed by database systems. One of our results indicates that the well-known HRJN algorithm has shortcomings, because it does not stop reading its input as soon as possible. We find that it is NP-hard to overcome this weakness in the general case, but cases of limited query complexity are tractable. We prove the latter with an algorithm that infers provably tight bounds on the potential benefit of reading more input in order to stop as soon as possible. As a result, the algorithm achieves a cost that is within a constant factor of optimal.

Funder

Division of Information and Intelligent Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Retrieval of the Top-k Most Relevant Event-Partner Pairs;IEEE Transactions on Knowledge and Data Engineering;2021

2. Evaluating top-k queries with inconsistency degrees;Proceedings of the VLDB Endowment;2020-08

3. Top-k String Similarity Joins;32nd International Conference on Scientific and Statistical Database Management;2020-07-07

4. Top-k spatial distance joins;GeoInformatica;2020-02-12

5. In Good Company: Efficient Retrieval of the Top-k Most Relevant Event-Partner Pairs;Database Systems for Advanced Applications;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3