Selective specialization for object-oriented languages

Author:

Dean Jeffrey1,Chambers Craig1,Grove David1

Affiliation:

1. Department of Computer Science and Engineering, University of Washington, Seattle, WA

Abstract

Dynamic dispatching is a major source of run-time overhead in object-oriented languages, due both to the direct cost of method lookup and to the indirect effect of preventing other optimizations. To reduce this overhead, optimizing compilers for object-oriented languages analyze the classes of objects stored in program variables, with the goal of bounding the possible classes of message receivers enough so that the compiler can uniquely determine the target of a message send at compile time and replace the message send with a direct procedure call. Specialization is one important technique for improving the precision of this static class information: by compiling multiple versions of a method, each applicable to a subset of the possible argument classes of the method, more precise static information about the classes of the method's arguments is obtained. Previous specialization strategies have not been selective about where this technique is applied, and therefore tended to significantly increase compile time and code space usage, particularly for large applications. In this paper, we present a more general framework for specialization in object-oriented languages and describe a goal directed specialization algorithm that makes selective decisions to apply specialization to those cases where it provides the highest benefit. Our results show that our algorithm improves the performance of a group of sizeable programs by 65% to 275% while increasing compiled code space requirements by only 4% to 10%. Moreover, when compared to the previous state-of-the-art specialization scheme, our algorithm improves performance by 11% to 67% while simultaneously reducing code space requirements by 65% to 73%.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partial program analysis for staged compilation systems;Formal Methods in System Design;2024-06-13

2. Principles of Staged Static+Dynamic Partial Analysis;Static Analysis;2022

3. Judging a type by its pointer: optimizing GPU virtual functions;Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems;2021-04-17

4. Contextual dispatch for function specialization;Proceedings of the ACM on Programming Languages;2020-11-13

5. Dynamic dispatch of context-sensitive optimizations;Proceedings of the ACM on Programming Languages;2020-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3