A type-based compiler for standard ML

Author:

Shao Zhong1,Appel Andrew W.2

Affiliation:

1. Department of Computer Science, Yale University, 51 Prospect Street, New Haven, CT

2. Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ

Abstract

Compile-time type information should be valuable in efficient compilation of statically typed functional languages such as Standard ML. But how should type-directed compilation work in real compilers, and how much performance gain will type-based optimizations yield? In order to support more efficient data representations and gain more experience about type-directed compilation, we have implemented a new type-based middle end and back end for the Standard ML of New Jersey compiler. We describe the basic design of the new compiler, identify a number of practical issues, and then compare the performance of our new compiler with the old non-type-based compiler. Our measurement shows that a combination of several simple type-based optimizations reduces heap allocation by 36%; and improves the already-efficient code generated by the old non-type-based compiler by about 19% on a DECstation 500.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The history of Standard ML;Proceedings of the ACM on Programming Languages;2020-06-12

2. On the relative expressiveness of higher-order session processes;Information and Computation;2019-10

3. On the Relative Expressiveness of Higher-Order Session Processes;Programming Languages and Systems;2016

4. Structure-Preserving Compilation;Proceedings of the 16th International Symposium on Principles and Practice of Declarative Programming - PPDP '14;2014

5. Optimization coaching;ACM SIGPLAN Notices;2012-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3