SMT based parameter identifiable combination detection for non-linear continuous and hybrid dynamics

Author:

Ghosh Devleena1ORCID,Mandal Chittaranjan2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, India

2. Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India

Abstract

Parameter identifiability is an important aspect of parameter estimation of dynamic system modelling. Several methods exist to determine identifiability of parameter sets using the model definition and analysis of experimental data. There is also the possibility of some parameters being independently unidentifiable but forming identifiable parameter combinations. These identifiable parameter combinations are useful in model reparameterisation to estimate parameters experimentally. Multiple numerical and algebraic methods exist to detect identifiable parameter combinations of dynamic system models represented as ordinary differential equations (ODE). Local identifiability analysis of hybrid system models are available in the literature. However, methods for structural identifiability analysis and identifiable combination detection for hybrid systems are not explored. Here, we have developed a parameter identifiable combination detection method for non-linear hybrid systems along with ODE systems using an SMT based parameter space exploration method. For higher dimensional systems and larger parameter space, SMT based approaches may easily become computationally intractable. This problem has been mitigated to a large extent by heuristically limiting the parameter space to be explored, using Gaussian process regression and gradient based approaches. The developed method has been demonstrated for some simple hybrid models, biochemical models of ODE systems and non-linear hybrid systems.

Publisher

Association for Computing Machinery (ACM)

Reference73 articles.

1. A genetic algorithm for the maximum likelihood estimation of the parameters of sinusoids in a noisy environment;Abutaleb Ahmed S.;Circuits, Systems and Signal Processing,1997

2. Nonlinear systems parameter estimation using neural networks: Application to synchronous machines;Ahmed-Ali Tarek;Mathematical and Computer Modelling of Dynamical Systems,2007

3. Systems biology: Parameter estimation for biochemical models;Ashyraliyev Maksat;The FEBS Journal,2009

4. Global identifiability of nonlinear models of biological systems;Audoly Stefania;Transactions on Biomedical Engineering,2001

5. Stanley Bak and Taylor T Johnson. 2015. Periodically-scheduled controller analysis using hybrid systems reachability and continuization. In Real-Time Systems Symposium. 195–205.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3