Autobahn 2.0: minimizing bangs while maintaining performance (system demonstration)

Author:

Sun Marilyn1,Fisher Kathleen1

Affiliation:

1. Tufts University, USA

Abstract

Lazy evaluation has many advantages, but it can cause bad performance. Consequently, Haskell allows users to force eager evaluation at certain program points by inserting strictness annotations, known and written as bangs (!). Unfortunately, manual bang placement is difficult. Autobahn 1.0 uses a genetic algorithm to infer bang annotations that improve performance. However, Autobahn 1.0 often generates large numbers of superfluous bangs, which is problematic because users must inspect each such bang to determine whether it is safe. We introduce Autobahn 2.0, which uses GHC profiling information to reduce the number of superfluous bangs. When evaluated on the NoFib benchmark suite, Autobahn 2.0 reduced the number of inferred bangs by 90.2% on average, while only degrading program performance by 15.7% compared with the performance produced by Autobahn 1.0. In a case study on a garbage collection simulator, Autobahn 2.0 eliminated 81.8% of the recommended bangs, with the same 15.7% optimization degradation.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3