Who Should We Blame for Android App Crashes? An In-Depth Study at Scale and Practical Resolutions

Author:

Gong Liangyi1ORCID,Lin Hao2ORCID,Liu Daibo3ORCID,Yang Lanqi4ORCID,Wang Hongyi2ORCID,Qiu Jiaxing2ORCID,Li Zhenhua2ORCID,Qian Feng5ORCID

Affiliation:

1. CNIC, Chinese Academy of Sciences, Beijing, China and University of Chinese Academy of Sciences, Beijing, China

2. School of Software, Tsinghua University, Beijing, China

3. School of Computer Science and Electronic Engineering, Hunan University, Changsha, China

4. University of Chinese Academy of Sciences, Beijing, China

5. Ming Hsieh Department of ECE, University of Southern California, Los Angeles CA, USA

Abstract

Android system has been widely deployed in energy-constrained IoT devices for many practical applications, such as smart phone, smart home, healthcare, fitness, and beacons. However, Android users oftentimes suffer from app crashes, which directly disrupt user experience and could lead to data loss. Till now, the community have limited understanding of their prevalence, characteristics, and root causes. In this article, we make an in-depth study of the crash events regarding ten very popular apps of different genres, based on fine-grained system-level traces crowd-sourced from 93 million Android devices. We find that app crashes occur prevalently on the various hardware models studied, and better hardware does not seem to essentially relieve the problem. Most importantly, we unravel multi-fold root causes of app crashes, and pinpoint that the most crashes stem from the subtle yet crucial inconsistency between app developers’ supposed memory/process management model and Android’s actual implementations. We design practical approaches to addressing the inconsistency; after large-scale deployment, they reduce 40.4% of the app crashes with negligible system overhead. In addition, we summarize important lessons learned from this study, and have released our measurement code/data to the community.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3