Affiliation:
1. Sun Yat-Sen University, Guangzhou, China
2. Arizona State University, Tempe, USA
Abstract
Plan recognition aims to discover target plans (i.e., sequences of actions) behind observed actions, with history plan libraries or action models in hand. Previous approaches either discover plans by maximally “matching” observed actions to plan libraries, assuming target plans are from plan libraries, or infer plans by executing action models to best explain the observed actions, assuming that complete action models are available. In real-world applications, however, target plans are often not from plan libraries, and complete action models are often not available, since building complete sets of plans and complete action models are often difficult or expensive. In this article, we view plan libraries as corpora and learn vector representations of actions using the corpora; we then discover target plans based on the vector representations. Specifically, we propose two approaches, DUP and RNNPlanner, to discover target plans based on vector representations of actions. DUP explores the EM-style (Expectation Maximization) framework to capture local contexts of actions and discover target plans by optimizing the probability of target plans, while RNNPlanner aims to leverage long-short term contexts of actions based on RNNs (Recurrent Neural Networks) framework to help recognize target plans. In the experiments, we empirically show that our approaches are capable of discovering underlying plans that are not from plan libraries without requiring action models provided. We demonstrate the effectiveness of our approaches by comparing its performance to traditional plan recognition approaches in three planning domains. We also compare DUP and RNNPlanner to see their advantages and disadvantages.
Funder
Guangdong Province Key Laboratory of Big Data Analysis and Processing
Guangdong special branch plans young talent with scientific and technological innovation, Pearl River Science and Technology New Star of Guangzhou
National Natural Science Foundation of China
ONR
AFOSR
Guangdong Natural Science Fund for Distinguished Young Scholars
NASA
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献