Tight Localizations of Feedback Sets

Author:

Hecht Michael1,Gonciarz Krzysztof1,Horvát Szabolcs2

Affiliation:

1. Max Planck Institute of Molecular Cell Biology and Genetics, Center for Systems Biology Dresden, Germany

2. Max Planck Institute of Molecular Cell Biology and Genetics, Center for Systems Biology Dresden and Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

Abstract

The classical NP–hard feedback arc set problem (FASP) and feedback vertex set problem (FVSP) ask for a minimum set of arcs ε ⊆ E or vertices ν ⊆ V whose removal G ∖ ε, G ∖ ν makes a given multi–digraph G =( V , E ) acyclic, respectively. Though both problems are known to be APX–hard, constant ratio approximations or proofs of inapproximability are unknown. We propose a new universal O (| V || E | 4 )–heuristic for the directed FASP. While a ratio of r ≈ 1.3606 is known to be a lower bound for the APX–hardness, at least by empirical validation we achieve an approximation of r ≤ 2. Most of the relevant applications, such as circuit testing , ask for solving the FASP on large sparse graphs, which can be done efficiently within tight error bounds with our approach.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Reference57 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finding small feedback arc sets on large graphs;Computers & Operations Research;2024-09

2. Having the Right Tool;Feedback Arc Set;2022

3. Papers and Algorithms;Feedback Arc Set;2022

4. Feedback Arc Set;Feedback Arc Set;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3