A SAT Approach to Clique-Width

Author:

Heule Marijn J. H.1,Szeider Stefan2

Affiliation:

1. Department of Computer Sciences, The University of Texas at Austin, Austin, Texas, United States

2. Institute of Computer Graphics and Algorithms, TU Wien, Vienna, Austria

Abstract

Clique-width is a graph invariant that has been widely studied in combinatorics and computational logic. Computing the clique-width of a graph is an intricate problem, because the exact clique-width is not known even for very small graphs. We present a new method for computing clique-width via an encoding to propositional satisfiability (SAT), which is then evaluated by a SAT solver. Our encoding is based on a reformulation of clique-width in terms of partitions that utilizes an efficient encoding of cardinality constraints. Our SAT-based method is the first to discover the exact clique-width of various small graphs, including famous named graphs from the literature as well as random graphs of various density. With our method, we determined the smallest graphs that require a small predescribed clique-width. We further show how our method can be modified to compute the linear clique-width of graphs, a variant of clique-width that has recently received considerable attention. In an appendix, we provide certificates for tight upper bounds for the clique-width and linear clique-width of famous named graphs.

Funder

European Research Council

Defense Sciences Office, DARPA

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Succinct data structures for bounded clique-width graphs;Discrete Applied Mathematics;2024-07

2. Computing optimal hypertree decompositions with SAT;Artificial Intelligence;2023-12

3. Top-k Learned Clauses for Modern SAT Solvers;International Journal on Artificial Intelligence Tools;2023-02

4. Chapter 17. Fixed-Parameter Tractability;Frontiers in Artificial Intelligence and Applications;2021-02-02

5. Quantified Boolean Solving for Achievement Games;KI 2021: Advances in Artificial Intelligence;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3