Multi-objective Optimization of Mapping Dataflow Applications to MPSoCs Using a Hybrid Evaluation Combining Analytic Models and Measurements

Author:

Letras Martin1,Falk Joachim1,Schwarzer Tobias1,Teich Jürgen1

Affiliation:

1. Hardware/Software Co-Design, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Bayern, Germany

Abstract

Dataflow modeling is well suited for a large variety of applications for modern multi-core architectures, e.g., from the signal processing and the control domain. Furthermore, Design Space Exploration (DSE) can be used to explore mappings of tasks to hardware resources (cores of an MPSoC) and their scheduling to obtain optimized trade-off solutions between throughput and resource costs. However, the throughput evaluation of an implementation candidate via compilation-in-the-loop or simulation-based approaches can be extremely time-consuming. Such a deficiency is very detrimental, because a typical DSE run needs to evaluate thousands of implementation candidates. As a remedy, we propose a hybrid-adaptive DSE where a max-plus algebra-based analytic throughput calculation method is used in the initial DSE phase to enable a fast progress of the search space exploration. However, as this analysis may be inaccurate as neglecting some real-world effects like cache and scheduling overhead, throughput measurements are taken later in the DSE. Moreover, we explore the trade-off between scheduling efficiency of implementation candidates—in favor of reducing concurrency—and exploiting concurrency to a large extent for parallel execution of the application. To find solutions of highest achievable throughput, it is shown that not only highly scheduling efficient implementation candidates but also highly parallel implementation candidates are essential when determining the initial population. In this realm, we contribute a method for diversity-based population initialization. For a representative set of benchmarks, it is shown that the combination of the two major contributions allows us to find much higher throughput multi-core solutions within a given exploration time compared to a state-of-the-art DSE approach.

Funder

Embedded System Initiative (ESI) Application Center

Bavarian Ministry of Economic Affairs

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3