Supporting Safety Analysis of Image-processing DNNs through Clustering-based Approaches

Author:

Attaoui Mohammed Oualid1ORCID,Fahmy Hazem1ORCID,Pastore Fabrizio1ORCID,Briand Lionel2ORCID

Affiliation:

1. SnT Centre, University of Luxembourg, Luxembourg, Luxembourg

2. Lero Centre, University of Limerick, Limerick, Ireland and School of EECS, University of Ottawa, Ottawa, Canada

Abstract

The adoption of deep neural networks (DNNs) in safety-critical contexts is often prevented by the lack of effective means to explain their results, especially when they are erroneous. In our previous work, we proposed a white-box approach (HUDD) and a black-box approach (SAFE) to automatically characterize DNN failures. They both identify clusters of similar images from a potentially large set of images leading to DNN failures. However, the analysis pipelines for HUDD and SAFE were instantiated in specific ways according to common practices, deferring the analysis of other pipelines to future work. In this article, we report on an empirical evaluation of 99 different pipelines for root cause analysis of DNN failures. They combine transfer learning, autoencoders, heatmaps of neuron relevance, dimensionality reduction techniques, and different clustering algorithms. Our results show that the best pipeline combines transfer learning, DBSCAN, and UMAP. It leads to clusters almost exclusively capturing images of the same failure scenario, thus facilitating root cause analysis. Further, it generates distinct clusters for each root cause of failure, thus enabling engineers to detect all the unsafe scenarios. Interestingly, these results hold even for failure scenarios that are only observed in a small percentage of the failing images.

Funder

IEE Luxembourg, Luxembourg’s National Research Fund

NSERC of Canada

Discovery and CRC programs

Publisher

Association for Computing Machinery (ACM)

Reference101 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from https://www.tensorflow.org/Software available from tensorflow.org.

2. Testing vision-based control systems using learnable evolutionary algorithms

3. Regions of interest selection in histopathological images using subspace and multi-objective stream clustering;Attaoui Mohammed Oualid;The Visual Computer,2022

4. Black-box Safety Analysis and Retraining of DNNs based on Feature Extraction and Clustering

5. Mohammed Oualid Attaoui Hazem Fahmy Fabrizio Pastore and Lionel Briand. 2023. DNN Explanation for Safety Analysis: An Empirical Evaluation of Clustering-based Approaches - Replicability Package. Retrieved from https://figshare.com/projects/DNN_Explanation_for_Safety_Analysis_an_Empirical_Evaluation_of_Clustering-based_Approaches/157973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3