Reconciling description logics and rules

Author:

Motik Boris1,Rosati Riccardo2

Affiliation:

1. University of Oxford, Oxford, United Kingdom

2. Sapienza Università di Roma, Rome, Italy

Abstract

Description logics (DLs) and rules are formalisms that emphasize different aspects of knowledge representation: whereas DLs are focused on specifying and reasoning about conceptual knowledge, rules are focused on nonmonotonic inference. Many applications, however, require features of both DLs and rules. Developing a formalism that integrates DLs and rules would be a natural outcome of a large body of research in knowledge representation and reasoning of the last two decades; however, achieving this goal is very challenging and the approaches proposed thus far have not fully reached it. In this paper, we present a hybrid formalism of MKNF + knowledge bases , which integrates DLs and rules in a coherent semantic framework. Achieving seamless integration is nontrivial, since DLs use an open-world assumption, while the rules are based on a closed-world assumption. We overcome this discrepancy by basing the semantics of our formalism on the logic of minimal knowledge and negation as failure (MKNF) by Lifschitz. We present several algorithms for reasoning with MKNF + knowledge bases, each suitable to different kinds of rules, and establish tight complexity bounds.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proceedings 39th International Conference on Logic Programming;Electronic Proceedings in Theoretical Computer Science;2023-09-12

2. Calculation and evaluation of similarity in sports information resources based on combined algorithm;Applied Mathematics and Nonlinear Sciences;2023-07-31

3. Using Hybrid Knowledge Bases for Meta-reasoning over OWL 2 QL;Practical Aspects of Declarative Languages;2023

4. Defeasible RDFS via rational closure;Information Sciences;2022-12

5. An Iterative Fixpoint Semantics for MKNF Hybrid Knowledge Bases with Function Symbols;Electronic Proceedings in Theoretical Computer Science;2022-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3