Affiliation:
1. Washington State University, Pullman, USA
Abstract
Resistive random-access memory (ReRAM)-based processing-in-memory (PIM) architectures are used extensively to accelerate inferencing/training with convolutional neural networks (CNNs). Three-dimensional (3D) integration is an enabling technology to integrate many PIM cores on a single chip. In this work, we propose the design of a
t
hermally
e
fficient data
flo
w-aware monolithic 3D (M3D)
N
oC architecture referred to as
TEFLON
to accelerate CNN inferencing without creating any thermal bottlenecks.
TEFLON
reduces the Energy-Delay-Product (EDP) by 42%, 46%, and 45% on an average compared to a conventional 3D mesh NoC for systems with 36-, 64-, and 100-PIM cores, respectively.
TEFLON
reduces the peak chip temperature by 25
K
and improves the inference accuracy by up to 11% compared to sole performance-optimized SFC-based counterpart for inferencing with diverse deep CNN models using CIFAR-10/100 datasets on a 3D system with 100-PIM cores.
Funder
National Science Foundation's
Publisher
Association for Computing Machinery (ACM)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献