Relevance-Based Language Models

Author:

Lavrenko Victor1,Croft W. Bruce1

Affiliation:

1. University of Massachusetts, Amherst, MA

Abstract

We explore the relation between classical probabilistic models of information retrieval and the emerging language modeling approaches. It has long been recognized that the primary obstacle to effective performance of classical models is the need to estimate a relevance model: probabilities of words in the relevant class. We propose a novel technique for estimating these probabilities using the query alone. We demonstrate that our technique can produce highly accurate relevance models, addressing important notions of synonymy and polysemy. Our experiments show relevance models outperforming baseline language modeling systems on TREC retrieval and TDT tracking tasks. The main contribution of this work is an effective formal method for estimating a relevance model with no training data.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Management Information Systems

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Surprising Effectiveness of Rankers trained on Expanded Queries;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. Old IR Methods Meet RAG;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

3. Utilizing passage‐level relevance and kernel pooling for enhancing BERT‐based document reranking;Computational Intelligence;2024-06

4. How to personalize and whether to personalize? Candidate documents decide;Knowledge and Information Systems;2024-05-27

5. Improving Retrieval in Theme-specific Applications using a Corpus Topical Taxonomy;Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3