Interactive synthesis of temporal specifications from examples and natural language

Author:

Gavran Ivan1,Darulova Eva1,Majumdar Rupak1ORCID

Affiliation:

1. MPI-SWS, Germany

Abstract

Motivated by applications in robotics, we consider the task of synthesizing linear temporal logic (LTL) specifications based on examples and natural language descriptions. While LTL is a flexible, expressive, and unambiguous language to describe robotic tasks, it is often challenging for non-expert users. In this paper, we present an interactive method for synthesizing LTL specifications from a single example trace and a natural language description. The interaction is limited to showing a small number of behavioral examples to the user who decides whether or not they exhibit the original intent. Our approach generates candidate LTL specifications and distinguishing examples using an encoding into optimization modulo theories problems. Additionally, we use a grammar extension mechanism and a semantic parser to generalize synthesized specifications to parametric task descriptions for subsequent use. Our implementation in the tool LtlTalk starts with a domain-specific language that maps to a fragment of LTL and expands it through example-based user interactions, thus enabling natural language-like robot programming, while maintaining the expressive power and precision of a formal language. Our experiments show that the synthesis method is precise, quick, and asks only a few questions to the users, and we demonstrate in a case study how LtlTalk generalizes from the synthesized tasks to other, yet unseen, tasks.

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference57 articles.

1. Shengwei An Rishabh Singh Sasa Misailovic and Roopsha Samanta. 2020. Augmented example-based synthesis using relational perturbation properties. PACMPL 4 POPL ( 2020 ). https://doi.org/10.1145/3371124 10.1145/3371124 Shengwei An Rishabh Singh Sasa Misailovic and Roopsha Samanta. 2020. Augmented example-based synthesis using relational perturbation properties. PACMPL 4 POPL ( 2020 ). https://doi.org/10.1145/3371124 10.1145/3371124

2. Dana Angluin. 1987. Learning Regular Sets from Queries and Counterexamples. Inf. Comput. 75 2 ( 1987 ). https: //doi.org/10.1016/ 0890-5401 ( 87 ) 90052-6 10.1016/0890-5401(87)90052-6 Dana Angluin. 1987. Learning Regular Sets from Queries and Counterexamples. Inf. Comput. 75 2 ( 1987 ). https: //doi.org/10.1016/ 0890-5401 ( 87 ) 90052-6 10.1016/0890-5401(87)90052-6

3. Yoav Artzi. 2016. Cornell SPF : Cornell Semantic Parsing Framework. arXiv:arXiv:1311.3011 Yoav Artzi. 2016. Cornell SPF : Cornell Semantic Parsing Framework. arXiv:arXiv:1311.3011

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SynthoMinds: Bridging human programming intuition with retrieval, analogy, and reasoning in program synthesis;Journal of Systems and Software;2024-10

2. Generalized Optimization Modulo Theories;Lecture Notes in Computer Science;2024

3. Program Synthesis and Natural Language Processing: A Systematic Literature Review;2023 11th International Conference in Software Engineering Research and Innovation (CONISOFT);2023-11-06

4. Learning Linear Temporal Properties for Autonomous Robotic Systems;IEEE Robotics and Automation Letters;2023-05

5. Semantic Role Assisted Natural Language Rule Formalization for Intelligent Vehicle;Rules and Reasoning;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3