Montgomery Multiplication for Public Key Cryptography on MSP430X

Author:

Seo Hwajeong1ORCID,An Kyuhwang1,Kwon Hyeokdong1,Hu Zhi2

Affiliation:

1. Hansung University, Republic of Korea

2. Central South University, China

Abstract

For traditional public key cryptography and post-quantum cryptography, such as elliptic curve cryptography and supersingular isogeny key encapsulation, modular multiplication is the most performance-critical operation among basic arithmetic of these cryptographic schemes. For this reason, the execution timing of such cryptographic schemes, which may highly determine that the service availability for low-end microprocessors (e.g., 8-bit AVR, 16-bit MSP430X, and 32-bit ARM Cortex-M), mainly relies on the efficiency of modular multiplication on target embedded processors. In this article, we present new optimal modular multiplication techniques based on the interleaved Montgomery multiplication on 16-bit MSP430X microprocessors, where the multiplication part is performed in a hardware multiplier and the reduction part is performed in a basic arithmetic logic unit (ALU) with the optimal modular multiplication routine, respectively. This two-step approach is effective for the special modulus of NIST curves, SM2 curves, and supersingular isogeny key encapsulation. We further optimized the Montgomery reduction by using techniques for “Montgomery-friendly” prime. This technique significantly reduces the number of partial products. To demonstrate the superiority of the proposed implementation of Montgomery multiplication, we applied the proposed method to the NIST P-256 curve, of which the implementation improves the previous modular multiplication operation by 23.6% on 16-bit MSP430X microprocessors and to the SM2 curve as well (first implementation on 16-bit MSP430X microcontrollers). Moreover, secure countermeasures against timing attack and simple power analysis are also applied to the scalar multiplication of NIST P-256 and SM2 curves, which achieve the 8,582,338 clock cycles (0.53 seconds@16 MHz) and 10,027,086 clock cycles (0.62 seconds@16 MHz), respectively. The proposed Montgomery multiplication is a generic method that can be applied to other cryptographic schemes and microprocessors with minor modifications.

Funder

National Research Foundation of Korea

Institute for Information and Communications Technology Promotion

Research on Blockchain Security Technology for IoT Services

Defense Acquisition Program Administration

Agency for Defense Development

Korean government

Military Crypto Research Center

Korean governmen

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3