Efficient and extensible algorithms for multi query optimization

Author:

Roy Prasan1,Seshadri S.2,Sudarshan S.1,Bhobe Siddhesh3

Affiliation:

1. I.I.T. Bombay

2. Bell Labs.

3. PSPL Ltd. Pune

Abstract

Complex queries are becoming commonplace, with the growing use of decision support systems. These complex queries often have a lot of common sub-expressions, either within a single query, or across multiple such queries run as a batch. Multiquery optimization aims at exploiting common sub-expressions to reduce evaluation cost. Multi-query optimization has hither-to been viewed as impractical, since earlier algorithms were exhaustive, and explore a doubly exponential search space. In this paper we demonstrate that multi-query optimization using heuristics is practical, and provides significant benefits. We propose three cost-based heuristic algorithms: Volcano-SH and Volcano-RU, which are based on simple modifications to the Volcano search strategy, and a greedy heuristic. Our greedy heuristic incorporates novel optimizations that improve efficiency greatly. Our algorithms are designed to be easily added to existing optimizers. We present a performance study comparing the algorithms, using workloads consisting of queries from the TPC-D benchmark. The study shows that our algorithms provide significant benefits over traditional optimization, at a very acceptable overhead in optimization time.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Enumeration of Recursive Plans in Transformation-Based Query Optimizers;Proceedings of the VLDB Endowment;2024-07

2. A Fast Plan Enumerator for Recursive Queries;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. UnA-Mix: Rethinking Image Mixtures for Unsupervised Person Re-Identification;Processes;2024-01-10

4. Atrapos: Real-time Evaluation of Metapath Query Workloads;Proceedings of the ACM Web Conference 2023;2023-04-30

5. Tempura: a general cost-based optimizer framework for incremental data processing (Journal Version);The VLDB Journal;2023-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3