Towards self-tuning data placement in parallel database systems

Author:

Lee Mong Li1,Kitsuregawa Masaru2,Ooi Beng Chin3,Tan Kian-Lee3,Mondal Anirban3

Affiliation:

1. faculty at the University of Wisconsin-Madison

2. Institute of Industrial Science, University of Tokyo, JAPAN

3. Department of Computer Science, National University of singapore,SINGAPORE

Abstract

Parallel database systems are increasingly being deployed to support the performance demands of end-users. While declustering data across multiple nodes facilitates parallelism, initial data placement may not be optimal due to skewed workloads and changing access patterns. To prevent performance degradation, the placement of data must be reorganized, and this must be done on-line to minimize disruption to the system. In this paper, we consider a dynamic self-tuning approach to reorganization in a shared nothing system. We introduce a new index-based method that faciliates fast and efficient migration of data. Our solution incorporates a globally height-balanced structure and load tracking at different levels of granularity. We conducted an extensive performance study, and implemented the methods on the Fujitsu AP3000 machine. Both the simulation and empirical results demonstratic that our proposed method is indeed scalable and effective in correcting any deterioration in system throughput.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3